Voting Round :

PJ6 Encounter

CLOSED : 2017-05-11 17:00:00
Perijove on : 2017-05-19 06:00 UT
About This Round
At PJ6 the orientation of the Juno spacecraft will be optimized for gravity studies, to understand more about the interior structure of Jupiter. That means that we will have radio contact with the spacecraft throughout the perijove pass. That in turn means that we will be able to downlink data the entire time, and we won't be limited by our onboard storage so severely.
Given this situation, we would like to increase the number of images in the polar timelapse sequence to study the intriguing motions of the storms around the poles. We will also be able to take just as many images on the pass across the midlatitudes and equator as we did on PJ5 - so we expect to be able to collect just as many images of Points of Interest that you vote on! Help us with that selection by weighing in on which sites you think are most important and, of course, voting.
Perijove Predict Map
About Perijove Predict Maps

Every perijove pass we have the challenge of predicting where Points of Interest will be as the different zones of the planet have different wind velocities. This map shows our effort to rotate the latitudinal zones with their different wind speeds to predict what will be under the Juno groundtrack.

Winner Selection
We had 20 Points of interest to select from for the PJ6 swath.

We started the process of generating image commands as soon as the voting closed. We looked first at the predictions of what time an image would need to be taken to get a particular POI. We have constraints on how closely together we can take images, because an image must be moved from the camera to the spacecraft computer before we take the next one. That means if targets are closer together in time than 90 sec we combined them. We took the time that corresponded to the higher priority target, but we will get the other POI's in the image.

This time the POI’s were close enough together in latitude that we were able to get all of them! It also helped that the spacecraft will be in contact with the earth transmitting data throughout the flyby, so we had more data volume to work with on this pass.

The list of POI’s we will image in order of the votes they received is as follows, with the “+” indicating targets we combined:

A whirl of a pearl + String of Pearls
The darkest spot + A multi-colored band
little greenish place + Hotspot + Hotspot tail
The big red stripe
Scott polar cap
Gas Irregularity + Spot of Brahman
Carl Sagan’s jawbreaker + South tropical zone
Things seem quiet in the south + Southern FFRs
Southern edge of northern FFRs
Great polar spot
Cloud ripple
Belt-zone border
Maximus Spatium

These images will be available after we get "C kernels" which is a file with the spacecraft orientation as a function of time. This data is necessary for us to process the data before we put it on the website. It takes two days for us to get that data from the navigation team. Perijove 6 is on Friday, May 19, so we expect to start posting the images on Tuesday, May 23.

Candidate Points of Interest

Voting has closed for this round. View results in the POI list below. Be sure to keep an eye on the Processing Gallery for images of POIs selected during this round of voting taken by the JunoCam!
Cylindrical map generated from data submitted via the JunoCam Planning section.

Voting Round Discussion

General discussion about this round.


Sign Up or Login to Comment
  1. comment by Garabedian-49 on 2017-05-10 18:32 UT

    Still a Whirl of Pearl :)

  2. comment by imagtek on 2017-05-08 14:24 UT

    I am amazed that the turbulence trail and its transition to linear flow trailing the Great Red Spot is not a continuing point of interest. It appears that it is, in fact, corkscrewing a stable zone on a vast planetary scale; i.e. the influence of the GRS circles the entire planet at its latitude. This is, to me, unprecedented and amazing.

  3. comment by Villanueva-74 on 2017-05-06 11:27 UT

    I would love to see the greenish place because I didn't know Jupiter even had the color green on it's surface.

    • comment by Mahalingam-07 on 2017-05-05 01:01 UT

      That's cool! Have a safe flight and clear sky over there! Greetings!

    • comment by Danae-67 on 2017-05-04 21:16 UT

      Wonder why the dark diagonals aren't mirrored in the south?

    • comment by Maquet-80 on 2017-05-04 11:56 UT

      ... it's your voting for POIs 166, 539, 830, and/or 1182, which extends the north polar time lapse sequence, and POIs 1071, 1131, and/or 1183 for extending the south polar sequence. Thanks!

    • comment by Maquet-80 on 2017-05-04 11:24 UT

      For PJ06, I'm most interested in extending the polar time lapse sequences further to the respective edge of the polar haze disks. By images from previous perijoves, I'm rather sure, that we can obtain information about the dynamics down to latitudes between 50 and 60 deg. PJ06 may be one of few opportunities to cover the dynamics of this large range of latitudes in a seamless way. The zones around edge of the haze disks are particularly turbulent. I'm expecting impressive image products. And a dense time-spacing, as dense as JunoCam allows, will show the edge of the haze from a number of viewing angles, offering the opportunity to obtain kind of a tomogram, which will tell more about the structure of the haze. I'm also hoping vor clues about the connection between FFRs, haze, the highly turbulent zone full of vortices around the haze disk, and Jupiter's differential rotation.

    • comment by Philosophia-47 on 2017-05-04 00:26 UT

      Some suggestions for voting:

      For this perijove, I have not had time to prepare a predictive map, but Marco Vedovato’s map of April 19-20 gives a good idea of what is in that sector. There are no special local features here, but the following latitude bands seem of the greatest interest.

      1. NEBs dark projection (‘hot spot’). [POI 341: “Little greenish place”, 6.8ºN; or, "Hot Spot"] There is a good chance that Juno will pass over one of these at PJ6 – although they are quite variable, and often disturbed by passing ‘rifts’. The Microwave Radiometer team are particularly hoping to catch one, and to get a JunoCam image of the same target, so it is very desirable to take this image; it would be the closest-ever image of a ‘hot spot’.

      2. NEB. [POI 839: “Gas irregularity”, 17.7ºN; or, "Spot of Brahman" as Glenn suggests] This belt is still massively disturbed, and JunoCam can view an unusual pale sector. This seems to be an example of a general process, where large-scale disturbance has evolved to small-scale turbulence, so it would be a worthwhile target for JunoCam’s high resolution. The image will also give a wider-field view of any NEBs ‘hot spot’.

      3. Dark vortices on the N2 jet (NNTB south edge). [POI 830: “Great polar spot”, 36.4ºN] Many dark spots (presumably vortices) have arisen on this jet, which may be recovering from suppression during last year’s great NTBs jet outbreak. There will be a good chance of catching one. The image would also cover the revived NTB as it continues to mature.

      4,5. North and south polar regions. [POI 166: “Scott polar cap”, 64.8ºN; & POI 1131: “Things seem quiet in the south”, 63.5ºS].

      --John Rogers

    • comment by Glenn on 2017-04-28 05:33 UT

      Spot of Brahman is in a latitude region where we appear to be seeing mesoscale waves that only the highest resolution imaging can detect, e.g. Hubble Space Telescope imaging with WFC3. They aren't at all longitudes, but it would be scientifically extremely useful to get the closest close-up of this region. They don't cover all longitudes, so this is not guaranteed, but we're seeing them in the last few months in Juno-supporting observations and haven't for many years. So we don't know why they are appearing now.